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Loss Parameter Calculations

J. M. Cook

1 Introduction

In reference [1] Sands and Rees propose an electronic bench measurement of the impulse energy
loss of a stored particle bunch to vacuum-chamber components.  The components act as the outer
conductor of a coaxial line with a thin wire as center conductor.  Short pulses are then transmitted
through this coaxial system to simulate relativistic particle bunches.  Their proposal has since
been implemented by several investigators [2,3,4,5,6] and has become a well-known technique.

They derive a first-order approximation to the loss parameter k for use in these measurements.
The purpose of this note is to point out that the exact expression for k is as simple as its first-order
approximation and to recommend its use even when k is small.

2 A First-Order Approximation

In an equivalent circuit model of the system, the value i(t) of the function i represents the current
that is at time t entering the chamber being tested.  To record i, the coaxial cable from the pulse
generator is split as shown in Figure 2 of [6] and the reference chamber shown there in parallel
with the test chamber is removed so that the sampling head of the corresponding oscilloscope is
symmetric with the entrance to the test chamber.  The impedance of the sampling head is equal to

Zo, the characteristic impedance of the cable, so when the pulse deposits an amount1

of energy into that resistance, an equal amount of energy is also put into the test component by the
other half of the split pulse.

A second oscilloscope with sampling head also of resistance Z0 is positioned at the exit from the
chamber.  Thus the system is instrumented for a complete set of input-output measurements with
input to the left end of the chamber and output from the right end, from and to coaxial cables with
characteristic impedance Z0.  There is no provision for input from the right (usually unnecessary
by symmetry) or for the measurement of reflections to the left, back towards the pulse generator.

The energy deposited in the sampling head at the exit from the test chamber is equal to U minus
the energy intercepted by the chamber.  Subtract the input pulse from the output pulse to form δi.

1See equation (B-1) on page 38 of [1].
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Then the first-order approximation to the energy change,2 as given by the variational calculus (see
§ 3.2 in [7]), is the first variation of U:

By definition of k,3

where , and ΔU is the exact increment of U corresponding to the increment δi of i.

(Because it is the independent variable, Δi = δi.4) Therefore5 the first approximation to k is given
by

3 An Exact Expression

The “exact” expression will be obtained by repeating arguments of Sands and Rees except where
they explicitly state that they are neglecting terms of order higher than one.  Then we simply keep
all of those terms.  The resulting expression will be exact in the sense that it follows from the
arguments of Sands and Rees.  If those arguments are not valid then their first-order
approximation to k should not be used without some other derivation.

Higher order approximations to k can be obtained by adding to δU in the above expression higher
order terms in the Taylor expansion.

2See the first equality in equation B-6 on page 39 of [1]
3See equation (8) on page 16 of [1]
4In equations (B-3) and (B-4) on page 38 of [1], Δi is denoted by -ia. We expect it to be mostly negative (see line

4 on page 41 of [1]).
5See equation 10 on page 16 of [1].  The minus sign corresponds to the choice of the sign of δi.
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(see page 87 of [8]).  But U is a quadratic functional so the variational derivatives δnU/διn are all
zero for n > 2 (see §24 in [7]) and the Taylor expansion reduces to

This is an algebraic identity easily verified by purely algebraic manipulations without use of any

fancy derivatives.6  The exact formula for k is then obtained from its first-order approximation
simply by replacing δU there by ΔU:

The inaccuracy in the first-order approximation is given by the second-order term, so the
approximation is always larger than the exact value.  In references [1,2,3,4,5,6] the inaccuracy
must be reduced (but not eliminated) by shifting the data describing the output pulse backwards to
correct for the time-delay as the pulse traverses the chamber.  Minimization of the second-order
term is then just a one-parameter least-squares fit.  As so determined, k is an insensitive function
of the shift because the minimum is characterized by a zero of the derivative of that function.
However in [6], as in earlier papers, the shift was determined by bringing into coincidence the
leading edges of the two pulses. The particular algorithm used in [6] was quite effective at
obtaining this coincidence but, unlike the minimization algorithm which compares the entire
pulse-shapes, it compares only the shapes of the leading edges.  At the suggestion of Gil Nicholls
the sensitivity of the first-order-approximate k to this shift was investigated.  It was found to be so
high as to threaten the validity of the approximation.  On the other hand, the value of the exact
expression is invariant under time-translation.  No shift is necessary.

Alternatively, ΔU can be evaluated directly from its definition:

7

where i is the input pulse.

6Analogously, the higher order terms neglected by Sands and Rees in the first part of equation (B-6) on page 39 of

[1] can be recovered in the derivation of 2RoiΔiΔt from Roi2 Δt  two lines above by noticing that

Δi2 = (i + Δi)2 −i2 ≡ 2Δi + (Δi)2, and then keeping the second-order term (Δi)2.
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In some of the experiments done for [6], two components to be compared were tested
simultaneously, in parallel (see figure 2).  For example the value of k for a hardline as reference
versus hardline-plus-pillbox for test component was computed in by the first-order approximation
to be .20703 volts/picocoulomb.  When computed by the exact expression the value is .12569 V/
pC.  The difference, .08134, is the second-order correction term.  This is a relatively large number,
and the situation does not improve much when k is small.  For an elliptical beam chamber as
reference versus beam tube plus abrupt transition to antechamber, typically the first-order
approximation to k was about -.003 V/pC whereas the exact value was about -.004 V/pC, a
significant difference.
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7On page 38 of [1], energy dissipated in the chamber by the coaxial current pulse is neglected.  Instead, the energy
lost by the pulse is “... to a large extent coupled into the center wire ... to be dissipated in the terminations at the two
ends” (page 7, lines 5-7).  (On the other hand, the energy lost by a beam bunch “is transformed eventually into heat
energy in the walls” (page 7, line 2).  The central assumption of [1] is that both losses are equal (“... similar ...”, page
7, lines 12-14).)  Therefore on page 38, where only the coaxial current pulse is discussed, equations (B-2) through (B-

4) imply ΔU = U(i + δi) - U(i) = the energy  lost to the reflected pulse.

       The authors then go on to describe something they would “like” in the line at the bottom of page 38 and the next
three lines at the top of page 39 but I cannot find any supporting arguments for this preference.
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